
Coda: Code Documentation Application

Agnar Renolen

2.0, July 2001

Contents

1 Introduction 1

2 coda 2
2.1 coda::BeQuiet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 coda::DocifyFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 coda::DoDocify . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 coda::DoListFile . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 coda::DoRGlob . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.6 coda::GetOutputFormats . . . . . . . . . . . . . . . . . . . . . . 4
2.7 coda::Glob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.8 coda::MakeFileName . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.9 coda::SetOutputFormat . . . . . . . . . . . . . . . . . . . . . . . 4

3 CodaText 5
3.1 CodaText::BeginEnvironment . . . . . . . . . . . . . . . . . . . . 5
3.2 CodaText::BeginParagraph . . . . . . . . . . . . . . . . . . . . . 5
3.3 CodaText::DoOutput . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 CodaText::EndEnvironment . . . . . . . . . . . . . . . . . . . . . 6
3.5 CodaText::EndParagraph . . . . . . . . . . . . . . . . . . . . . . 6
3.6 CodaText::FindLineType . . . . . . . . . . . . . . . . . . . . . . 6
3.7 CodaText::Parse . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.8 CodaText::ParseBody . . . . . . . . . . . . . . . . . . . . . . . . 9
3.9 CodaText::ParseHeader . . . . . . . . . . . . . . . . . . . . . . . 9
3.10 CodaText::ParseParagraph . . . . . . . . . . . . . . . . . . . . . 9
3.11 CodaText::ParseShortHeader . . . . . . . . . . . . . . . . . . . . 10

4 EmbraceReader 10
4.1 EmbraceReader::GetNextItem . . . . . . . . . . . . . . . . . . . . 11
4.2 EmbraceReader::Init . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



5 HtmlOut 12
5.1 HtmlOut::BeginProject . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 HtmlOut::Docify . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 HtmlOut::DoTags . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 HtmlOut::EndProject . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5 HtmlOut::EndProject . . . . . . . . . . . . . . . . . . . . . . . . 13
5.6 HtmlOut::MakeReferenceText . . . . . . . . . . . . . . . . . . . . 14
5.7 HtmlOut::PutBody . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.8 HtmlOut::PutFigure . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.9 HtmlOut::PutHeader . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.10 HtmlOut::PutTOC . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.11 HtmlOut::RegisterName . . . . . . . . . . . . . . . . . . . . . . . 15
5.12 HtmlOut::WriteMainFile . . . . . . . . . . . . . . . . . . . . . . . 15
5.13 HtmlOut::WriteStyle . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.14 HtmlOut::WriteTocIndex . . . . . . . . . . . . . . . . . . . . . . 16
5.15 HtmlOut::WriteTocItems . . . . . . . . . . . . . . . . . . . . . . 16

6 LatexOut 16
6.1 LatexOut::BeginProject . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 LatexOut::CheckString . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 LatexOut::Docify . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4 LatexOut::PutArticleHeader . . . . . . . . . . . . . . . . . . . . . 17
6.5 LatexOut::PutBody . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.6 LatexOut::PutItemHeader . . . . . . . . . . . . . . . . . . . . . . 18
6.7 LatexOut::PutParagraph . . . . . . . . . . . . . . . . . . . . . . . 18

7 misc 19
7.1 misc::FindCommonStart . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 misc::html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 misc::mset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.4 misc::PlaceDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.5 misc::rglob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.6 misc::setoptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.7 misc::stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 PlainReader 21
8.1 PlainReader::GetNextItem . . . . . . . . . . . . . . . . . . . . . . 22
8.2 PlainReader::Init . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 PrefixReader 22
9.1 PrefixReader::GetNextItem . . . . . . . . . . . . . . . . . . . . . 23
9.2 PrefixReader::Init . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2



10 wcoda 23
10.1 wcoda::AddFiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.2 wcoda::BuildStatusWindow . . . . . . . . . . . . . . . . . . . . . 24
10.3 wcoda::BuildWindow . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.4 wcoda::ChangeCurrentDir . . . . . . . . . . . . . . . . . . . . . . 24
10.5 wcoda::ChangeDir . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.6 wcoda::CheckDocability . . . . . . . . . . . . . . . . . . . . . . . 25
10.7 wcoda::CloseStatusWindow . . . . . . . . . . . . . . . . . . . . . 25
10.8 wcoda::DeleteFiles . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.9 wcoda::Docify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.10wcoda::FillFormatCombo . . . . . . . . . . . . . . . . . . . . . . 25
10.11wcoda::FillWorkingDir . . . . . . . . . . . . . . . . . . . . . . . . 26
10.12wcoda::PickTargetDir . . . . . . . . . . . . . . . . . . . . . . . . 26

1 Introduction

WHAT IS CODA?

A coda is a passage that completes a piece of music. Likewise, the Coda code
documentation application is a tool that completes the development of soft-
ware: When the final version has been implemented, before release, it is time
to produce the documentation.

Coda reads specially formatted comments in the source code, and produces
output in various formats. This version of Coda is planned to support output
in HTML and LaTeX. Coda can also read comments from several programming
languages. Coda is packagesd with support for Tcl, Perl, C, C++, C#, Java,
Pascal, Lisp and Visual Basic. However Coda can be customized to support
other formats as well. Coda also support reading pure text files containing raw
CodaText.

RUNNING CODA

The calling syntax of coda is as follows:
coda [-q] [-t format] [-d dir] [-r pattern] [-f file] pattern1 [pattern2

...]
The parameters have the following meaning.

-t Specifies the output format. Leagal values of format are ”html” and ”latex”.
The default value is ”html”.

-d Specifies the target directory where coda is to put the output files. The
default value is ”doc”

-r Specifies that all files in the current directory and in all subdirectories match-
ing a pattern is to be docified. This options can be repeated many times
with different patterns.

3



-f Specifies a file named file contains a list of files to docify. This option is also
repeatable.

-q Tells coda to be quiet, that is, no output will be given during progress.

The remaining arguments, pattern1, pattern2 and so forth, specifies the
files to docify in the current directory.

THE CODA FORMAT

The text format regognized by coda is called CodaText. It is a text format de-
signed for documenting source code by writing the documentation as comments
within the source files. The main purpose of designing this format is to provide
a text format that is

• easy to read

• easy to write

• easy to remember

• fairly easy to parse

You may read the CodaText format specification1 about the CodaText for-
mat.

2 coda

2.1 coda::BeQuiet

SYNOPSIS

BeQuiet

DESCRIPTION

Makes coda run in quiet mode, that is, no output will be produced when coda is
running. In practice, since all output is performed using the puts function, the
proc renames the original puts proc to fputs and creates a new puts function
that forwards it’s procs to fputs only if output is to a channel.

2.2 coda::DocifyFile

SYNOPSIS

DocifyFile fileName
1http://coda.sourceforge.net/codatext.html

4



DESCRIPTION

This proc checks the extension of the fileName and deploys the corresponding
reader. If the file type is not regognized, the proc outputs a message, and returns
without docifying the file.

2.3 coda::DoDocify

SYNOPSIS

DoDocify ?options? ?pattern? ?pattern? ...

DESCRIPTION

Docifes a project. Regognized options are:

-t format Specifies a target format. Legal values are html wich is default, and
latex.

-d dirName Specifies a target directory. Default value is doc.

-r pattern Specifies that all files matching pattern in the top directory and all
subdirectories are to be docified. This option is repeatable.

-f fileName Specifies that the file filename contains a list of files to be docified.
This options is repeatable.

The remaining pattern arguments specifies that all files mathing the pattern
in the current directory are to be docified.

2.4 coda::DoListFile

SYNOPSIS

DoListFile fileName

DESCRIPTION

The file fileName contains a list of files, and this proc will docify all of them.

2.5 coda::DoRGlob

SYNOPSIS

DoRGlob pattern

DESCRIPTION

Implements the -r pattern options of Coda. Docifies all files matching a pattern
in the top directory (either specified in the pattern or in the current directory)
and all its subdirectories.

5



2.6 coda::GetOutputFormats

SYNOPSIS

GetOutputFormats

DESCRIPTION

Returns a list of output formats supportede by coda.

2.7 coda::Glob

SYNOPSIS

DoGlob pattern

DESCRIPTION

Docifies all files mathing pattern in the current or specified directory. In con-
trast to coda::DoRGlob (see Section ??), this proc does not search through
subdirectories.

2.8 coda::MakeFileName

SYNOPSIS

MakeFileName fileName

DESCRIPTION

If a doc item contains colons, for example because of namespaces, then returns
a string which is identical to name except that all colons, semicolons and am-
phersand’s are replaced with underscores (Remember filenames cannot contain
colons these characers).

2.9 coda::SetOutputFormat

SYNOPSIS

SetOutputFormat format

DESCRIPTION

Specifies the output format that coda shuld produce. If the format is not sup-
ported by coda, an error is generated. Standard formats supported by coda is
currently ”html” and ”latex”.

6



3 CodaText

DESCRIPTION

CodaText is a text format that is designed to be easy to read and write as
source text, and fairly easy to parse and produce output in for example html.
The basic idea is to minimize the markup and make it into a natural part of
the text. You can read the CodaText format specification2 for the details of the
format.

This namespace provides the basic routines to parse up text in CodaText
format. The only proc that you should need to call is CodaText::Parse (see
Section ??).

3.1 CodaText::BeginEnvironment

SYNOPSIS

BeginEnvironment environmentType indentation

DESCRIPTION

Begins a new environment. This proc is called by CodaText::BeginParagraph
(see Section ??) whenever it starts a paragraph that needs a new environment.
The environment types reckognized by CodaText is itemized lists (il), enumer-
ated lists (el) and description lists (dl).

3.2 CodaText::BeginParagraph

SYNOPSIS

BeginParagraph paragraphType indentation

DESCRIPTION

Called whenever CodaText::ParseBody (see Section ??) encounters a new para-
graph. This proc checks the paragraphType, which is one of those returned
by FindLineType (see Section ??), and sets up the correct environemnt. If it
needs to be changed, calls CodaText::BeginEnvironment (see Section ??) and
CodaText::EndEnvironment.

3.3 CodaText::DoOutput

SYNOPSIS

DoOutput key value
2http://coda.sourceforge.net/codatext.html

7



DESCRIPTION

Appends a new key - value pair to the output list, which eventually will be
returned by CodaText::Parse (see Section ??). This proc also keeps tracks of
the stacks, and gives a warning if tags are not problerly formatted.

3.4 CodaText::EndEnvironment

SYNOPSIS

EndEnvironment

DESCRIPTION

Ends the current environment. This proc is called by CodaTExt::BeginParagraph
(see Section ??) whenever it starts a paragraph that requires the current envi-
ronment to end.

3.5 CodaText::EndParagraph

SYNOPSIS

EndParagraph pTypeVar pTextVar indentVar

DESCRIPTION

Called whenever CodaText::ParseBody (see Section ??) encounters the end of a
paragraph. pTypeVar is the name of a variable specifying the type of paragraph
to be ended, pTextVar is the name of a variable holding the raw paragraph
text, and indentVar is the name of a variable holding the indentation if the
paragraph.

The proc calls CodaText::ParseParagraph (see Section ??) to parse up the
style markup of the paragraph, and then set the paragraph type variable and the
paragraph text variabl to ””, and the indentation variable to ”0”. The reason
for clearing the variables in this proc, is to save the labour of doing it after each
call to this proc.

3.6 CodaText::FindLineType

SYNOPSIS

FindLineType string textVar indentVar paramVar

DESCRIPTION

Checks string whether it contains any indication of a new paragraph. Returns

h1 If string starts a level1 heading

8



h2 If string starts a level2 heading

ii If string starts a bulleted item

ei If string starts a enumerated item

pre If string starts a preformatted section

dt If string is a keyword of a description item

hr If string is a horizontal rule

”” If string is empty.

fig If string describes a figure or image. The image filename will be stored in
the paramVar variable.

p Otherwise.

The variable named textVar will contain the text of the line, when the para-
graph formatting tags has been removed. The variable named indentVar will
contain the number of spaces in the beginning of string. If the paragraph marker
contains an argument, such as
fig{filename}, the value of the argument will be stored in the variable named
paramVar.

CHANGES

12.05.2002 Extended proc to be able to return argument values of certain
paragraph markers.

3.7 CodaText::Parse

SYNOPSIS

Parse headerVar textLines

DESCRIPTION

Parses the list textLines, which contains the text lines of the input, stripped
from foreign markup (such as comment tags). headerVar is the name of an
array into which the Parser will but the header information it encounters. The
array will at least contain the following entries:

name Contains name of the doc item.

type Specifies the type of doc-item. Defaults to ”item” if omitted. If type is
set to ”document”, will normally generate a standalone output file.

Although the header will contain all entries from the header of the doc-item,
the following entries are considered standard:

9



title For larger documents, a title is appropriate. If you are documenting a
procedure, it is recommended to leave the title undefined.

summary Gives a brief one-line summary of the doc-item

author Contains a list of all authors

version Specifies the version of the document.

date Specifies the date of writing, or the date of approval of the document.

mansection If output is in unix man page format (roff), specifies the section
into which the man page is to be put.

The proc returns a list on the following format (which is similar to the text
dump tk command):

key1 value1 arg1 key2 value2 arg2 ...
The contents of value depends on the value of key. The possible keys are as

follows:

begin begins a new environment, paragraph or style. The value is the name of
the tag. Possible environment tags are:

il An itemized list

el An enumeretated list

dl A description list

Possible paragraph tags are:

p An ordinary paragraph.

dt The description term in a description list.

pre Preformatted text.

fig A figure. A begin fig pair will always be succeeded by a file key .

Possible styles are:

em Emphasized text

code A snippet of code, input or output.

var A metasymbol, typically a variable.

ref A reference to another doc-item

link A hyperlink to an url. This key will allways be succeded by an url
key.

cmd A command, typically a menu command.

end Ends the current environment, paragraph or style. The value is the name
of the tag, and can have the same values as for the begin key.

10



item Starts an item of itemized or enumerated list. For itemized lists, the value
is ”*”, for enumerated lists, the value will be the number of the item. Note
that text within these lists will have the normal paragraph tag. There can
be several paragraphs under the same item.

url This key will always follow a begin link pair, and the value will be the
url that the link points to.

text Specifies that value will contain a block of text.

3.8 CodaText::ParseBody

SYNOPSIS

ParseBody bodyLines

DESCRIPTION

Parses the body of a doc-item. The bodyLines argument is a lst of text lines
comprising the body.

CHANGES

12.05.2002 Proc extended to handle fig key.

3.9 CodaText::ParseHeader

SYNOPSIS

ParseHeader headerVar headerLines

DESCRIPTION

Parses the header of a CodaText item that adheres to the standard header
formet. The headerVar is the name of an array that will contain the header
information, and headerLines is a list of text lines comprising the header of a
CodaText document.

See CodaText::Parse (see Section ??) for the contents of the header array.

3.10 CodaText::ParseParagraph

SYNOPSIS

ParseParagraph paragraphType paragraphText

11



DESCRIPTION

Parses paragraphText for markup in running text. The following regognized
markup tags are recognized:

emphasized text Is identified as the text between two forward /slahses/.

computer voice Is identified as the text between square [brackets].

metasymbols Is identifies as the text between ¡angular braces¿.

references A reference to another document item is identfied as the text fol-
lowing a dollar sign and ended by the first space or dollarsign.

hyperlinks A link to an url is identified as the text embraced in curly braces
prefixed by the at charcter.

commands Commands, such as menu commands are embraced between two
—vertical bars—

3.11 CodaText::ParseShortHeader

SYNOPSIS

ParseShortHeader headerVar headerLines

DESCRIPTION

Parses the header of a CodaText item that adheres to the short header format
The headerVar is the name of an array that will contain the header information,
and headerLines is a list of text lines comprising the header of a CodaText
document.

See CodaText::Parse (see Section ??) for the contents of the header array.

4 EmbraceReader

DESCRIPITON

The Embrace reader is a comment reader that extraxts coda-comments from
programming languages where comments are embraced in special characters
such as ”/*” and ”*/” for C and java, and ”{” and ”}” for Pascal.

For the EmbraceReader to recognize coda-comments it needs a coda prefix
which distinguishes comments written for coda and other comments. The coda
prefix must be the only characters on the line, and the Coda comment applies
to the whole comment started by the coda prefix, and ended by the comment
suffix.

In addition, the EmbraceReader alows each line in the comment block to be
prefixed with a character to make the comment stand out more from the source
code, as in the follwing example.

12



/**
* EmbraceReader --- Comment reader for embrace style comment syntax
*
* DESCRIPTION
* ...
*/

In order for the EmbraceReader to trim off this line prefix correctly, it must
be alligned with the first identical character in the coda prefix, as in the example
above. This rule is necessary in order to distinguish the line prefix from the
bullet of an itemized list.

AUTHOR

Agnar Renolen, July 2001.

4.1 EmbraceReader::GetNextItem

SYNOPSIS

GetNextItem channelID

DESCRIPTION

Reads the next comment from the source file read in channelID. If a coda
comment block is read, the contents of the comment is returned (stripped from
comment markup) in form of a list of text lines. If no comment is found, an
empty string is returned, indicating that the end of the file has been reached.x

CHANGES

Jan 2nd, 2001 Previous version did not work for comments which did not
include a line prefix as indentation was lost. This un-reported bug is now
fixed.

4.2 EmbraceReader::Init

SYNOPSIS

Init codaPrefix linePrefix commentSufix

DESCRIPTION

Sets up the EmbraceReader to recognize comments where the first line starts
by codaPrefix, and each line can be prefixed with a linePrefix and ended by a
commentSuffix. For example for Java, one should set the coda prefix to ”/**”,
the line prefix to ”*” and the comment suffix to ”*/”. Note that the linePrefix
must be contained in the comment suffix, in order to be regognized.

13



5 HtmlOut

DESCRIPTION

The HtmlOut namespace provides procs for producing output of parsed Coda-
Text in HTML. The main procs of the namespace are

• HtmlOut::BeginProject (see Section ??)

• HtmlOut::Docify (see Section ??)

• HtmlOut::EndProject (see Section ??)

This docifier will output the files into a directory known as the target direc-
tory. Each doc-item will be given it’s own output file. And when the project is
ended, it copies the coda.css file from the home directory to the target direc-
tory. Then produces a main file named index.html, and a contents file named
toc.html. The main file, will set up three frames in the browser. The left frame
will contain the toc.html file and the right frame will contain an upper frame
for the title and a lower main frame for the doc-item.

If a doc-item is named main, it will be set up as the initial file in the main
frame. Otherwise, the first item in the table of contents frame, which should be
sorted alphabetically, will be set up as the intial file in the right frame.

Doc-items that has the type entry of the header set to ”document”, will not
be included in the table of contents. Use this if you want to create stand-alone
html pages that is not included included in the large set of files.

5.1 HtmlOut::BeginProject

SYNOPSIS

HtmlOut::BeginProject ?options?

DESCRIPTION

Begins a new docify project, and creates a new directory for the output if
necessary. Valid options are:

-dir Specifies the output directory. The dafault value is ”doc”.

5.2 HtmlOut::Docify

SYNOPSIS

HtmlOut::Docify headerVar docData

14



DESCRIPTION

Docifies a doc-item. Generates a file named after the name of the doc-item. The
headerVar array and the docData list contains data returned by CodaText::Parse
(see Section ??).

This proc calls in turn:

1. HtmlOut::RegisterName (see Section ??) to register the name of the doc-
item for the table of contents file for the project.

2. HtmlOut::PutHeader (see Section ??) to generate the html header and
the header of the doc item

3. HtmlOut::PutTOC (see Section ??) to generate a table of contens entry
of the doc-item.

4. HtmlOut::PutBody (see Section ??) to generate the body text of the

doc-item.

5.3 HtmlOut::DoTags

SYNOPSIS

DoTags tagList type

DESCRIPTION

If type equals ”start”, creates a string that starts the html tags in the tagList.
For example, the command DoTags {p b} start would return the string "pb".
If type equals ”end” produces the corresponding end tasks, in reverse order. For
example, the command DoTags {p b} end will return the string ”bp”.

5.4 HtmlOut::EndProject

SYNOPSIS

EndProject

DESCRIPTION

Called when all doc-items has been docified. This proc creates the main article
which will include all other items in alphabetical order.

5.5 HtmlOut::EndProject

SYNOPSIS

EndProject

15



DESCRIPTION

Called when all doc-items has been docified. This proc creates the main article
which will include all other items in alphabetical order.

5.6 HtmlOut::MakeReferenceText

SYNOPSIS

MakeReferenceText refName

DESCRIPTION

If a doc item named HtmlOut::PutBody has a reference to HtmlOut::MakeReferenceText
then the output for PutBody should not include the full name ”HtmlOut::MakeReferenceText”,
but rather just ”MakeReferenceText”. This proc returns ”MakeReferenceText”
if the the text is in the same namespace as the current item, or returns the
complete name otherwise.

5.7 HtmlOut::PutBody

SYNOPSIS

PutBody channelID docData docType

DESCRIPTION

Writes the body of a doc-item to the file inentified by channelID. The docData
is a list returned by CodaText::Parse (see Section ??), and docType is the value
of the type entry of the header array.

5.8 HtmlOut::PutFigure

SYNOPSIS

PutURL channelID URLorFile

DESCRIPTION

Invoked by HtmlOut::PutBody (see Section ??) whenever an file key is encoun-
tered.

5.9 HtmlOut::PutHeader

SYNOPSIS

PutHeader channelID headerVar

16



DESCRIPTION

Generates the header of a doc-item and writes out to channelId. Two types
of headers are generated, depending on the contents of the array named head-
erVar. If the headerVar array contains an entry named title, generates an
article-style header, otherwise generates an abbreviated header styles suitable
for documenting procs like this.

5.10 HtmlOut::PutTOC

SYNOPSIS

PutTOC channelID docData

DESCRIPTION

Traces through docData which is the parsed codaText returned by CodaText::Parse
(see Section ??) and generates a table of contents for the current doc item. The
contents are written out to the channelID by extracting thos paragrahs that are
of type h1 and h2, under a level one header ”CONTENTS”

5.11 HtmlOut::RegisterName

SYNOPSIS

RegisterName name

DESCRIPTION

This proc registers a name for the content index in the left frame of the browser.
The proc will attempt to register the name in a hierarchical fashion. The names
are organized hieracally be separating levels by period like in myclass.method
or by colons like in myclass::method.

5.12 HtmlOut::WriteMainFile

SYNOPSIS

WriteMainFile firstItem

DESCRIPTION

Sets up the main html file named index.html. The sets up two frames in the
browser, where the left frame contains the file generated by HtmlOut::WriteTocIndex
(see Section ??) and the right frame contains the file containing the item spec-
ified by the firstItem argument.

17



5.13 HtmlOut::WriteStyle

SYNOPSIS

WriteStyle

DESCRIPTION

Copies a style file from the coda directory into the target directory.

5.14 HtmlOut::WriteTocIndex

SYNOPSIS

HtmlOut::WriteTocIndex

DESCRIPTION

Writes out the html file which will appear in the left frame of the browser
containing an alphabetical and hiearcical list of all doc-items of the project.
The proc calls HtmlOut::WriteTocItems (see Section ??) to create the index
itself by a recursice method. This proc sets up the file, and the other stuf for
the index.

5.15 HtmlOut::WriteTocItems

SYNOPSIS

HtmlOut::WriteTocItems channelID

DESCRIPTION

Writes out the the table of contents to the file identified by channelID.

CHANGES

Jan 2nd, 2002. by Agnar Renolen Changed from a recursive procedure to
a straight one due to change in the way the tableOfContents variable is
stored.

6 LatexOut

DESCRIPTION

LatexOut is a docifier that produces output in LaTeX format. It works as
follows: Each doc item that have the type set to ”document”, will generate
its own article, otherwise it will be included in the main article. If an item is
named ”main”, it will be the first item to appear in the main article. The other
items will be reproduced in alphabetical order. The main item may contain a

18



title, which will be the title of the main article. If there is no main item or
the main item does not have a title, the title of the main article will be ”Coda
Documentation”.

6.1 LatexOut::BeginProject

SYNOPSIS

BeginProject ?options?

DESCRIPTION

Begins a new project, and creates a new directory for the output if necessary.
Valid options are:

-dir Specifies the output directory. The dafault value is ”doc”.

6.2 LatexOut::CheckString

SYNOPSIS

LatexOut::CheckString string

DESCRIPTION

Checks string for characters that are special to LaTeX and returns a string
where these characters are escaped with a backslash.

6.3 LatexOut::Docify

SYNOPSIS

HtmlOut::Docify headerVar docData

DESCRIPTION

Docifies a single doc-item. If the doc-item is of type ”document”, generates a
stand-alone article for that item. Otherwise, generates the body text of a section
of the main article. This article will be included in the main article generated
by LatexOut::EndProject (see Section ??). The proc calls LatexOut::PutBody
(see Section ??) to generate the body of the item.

6.4 LatexOut::PutArticleHeader

SYNOPSIS

PutArticleHeader channelID headerVar

19



DESCRIPTION

Generates the header of a LaTeX document of class ”article”. The output is
written to channelID and the headerVar is the name of an array containing the
header from the coda parser.

6.5 LatexOut::PutBody

SYNOPSIS

PutBody channelID headerVar docData

DESCRIPTION

Formats the body of a doc-item in LaTeX format. The output is written to
channelID, and the headerVar is the name of the array of the header info re-
turned from the coda parser, and the docData is the parsed data generated by
the parser.

6.6 LatexOut::PutItemHeader

SYNOPSIS

PutItemHeader channelID headerVar

DESCRIPTION

Writes out the header of each doc item. Specifically, this proc checks the name,
and inserts a new section if the toplevel namespace is new.

Then it adds a new subsection for the doc item; using the title if it exists,
the name otherwise.

6.7 LatexOut::PutParagraph

SYNOPSIS

PutParagraph channelID paragraphText

DESCRIPTION

This proc will output the paragraphText containing formatted LaTeX to chan-
nelID. Since paragraphText might be longer than one line long, it splits it into
several lines in order to make the output readable in ordinary editors.

20



7 misc

DESCRIPTION

This name space is imported into the root namespace. It is therefore not nec-
essary ti call them by the prefix.

7.1 misc::FindCommonStart

SYNOPSIS

FindCommonStart list

DESCRIPTION

Searches through the list and returns the longest substring that all items in the
list begins-with

7.2 misc::html

SYNOPSIS

html tag string ?-param value -param value ...?

DESCRIPTION

Returns a string where string is emebedded between an opening and closing
html-tag of type tag. For example the tcl command

html h2 "This is a Header"
Would return the string <h2>This is a Header</h2>.
The optional -param value arguments provide a convenient way to provide

parameter arguments to the tag. For example the tcl command
html h2 "Centered Header" -align center
Would return the string <h2 align="center">Centered Header<h2>
Three values of string have a special meaning:

+ Creates only an opening tag

- Creates only a closing tag

-+ Creates a closing tag followed by a new opening tag

7.3 misc::mset

SYNOPSIS

mset varlist valuelist

21



DESCRIPTION

Sets multiple variables with values from a list. The varlist contains variable
names and each variable will be assigned the corresponding value in valuelist.
For example

mset {name age sex} {Bill 42 male}
It is an error if valuelist contains fewer elements than the varlist. If the

valuelist contains more elements than the varlist the exceeding values will not
be assigned to any variable.

The procedure returns the a list containing the elements in valuelist that
were no assigned to a variable.

7.4 misc::PlaceDialog

SYNOPSIS

PlaceDialog dialogWindow ?parentWindow?

DESCRIPTION

Places a toplevel dialogWindow horizontally centered, and centered vertically
one third from the top on a parentWindow. If parentWindow is omitted, then
it is places according to the desktop.

7.5 misc::rglob

SYNOPSIS

rglob pattern

DESCRIPTION

Executes a recursive glob returning a list of all files mathing a pattern. If the
search is to be started in a particular directory, this is obtained by prefixing the
pattern with the directory name as e.g., rglob "c:/develop/tclproject/*.tcl".

The globbing is executed using the -nocomplain option, so if rglob finds
no matches, an empty list is returned.

7.6 misc::setoptions

SYNOPSIS

setoptions -option1 ?value1? -option2 ?value2? ... ?--? ?arg1 arg1
...?

22



DESCRIPTIONS

Provides a convenient way to parse options passed as parameters to procedures.
The procdure will create variables named optioni which will be assigned to the
corresponding value of valuei. If no value is provided for an option, the variable
will be assigned the value true. A -- marks the end of options. You must use
this option if the last option is not to be assigned any particular value (other
than true) to prevent the procedure to assign the value of the first arg to the
the last option.

The method returns a list consisting the remaining arguments arg1 arg2 ....
For example, the command

setoptions {-name Bill -age 42 -sex male -developer -- hello world}
Will set the variable name to ”Bill”, age to ”42” sex to ”male” and developer

to true, and return the list {hello world}.

7.7 misc::stack

SYNOPSIS

stack option varName ?arg? ?arg ...?

DESCRIPTION

Performs one of several stack operations on a stack given by varName. The
legal options are:

stack depth varName Returns the number of elements in the stack

stack pop varName Pops the topmost element from the stack and returns the
popped element.

stack push varName ?value value value...? Pushes one or more elements
on the stack. The last value will be the topmost element in the stack.

stack top varName Returns the topmost element on the stack without pop-
ping it from the stack.

A stack is simlpy a list where the topmost element is at the end of the list.

8 PlainReader

DESCRIPTION

The PlainReader is a reader that reads files that are written in pure CodaText.
One doc-item per file. This reader also allows the author to add comments in
the file. A comment is recognized as a line with a percent (”%”) as the first
(non-space) character.

23



8.1 PlainReader::GetNextItem

SYNOPSIS

GetNextItem channelID

DESCRIPTION

Reads the entire input from channelID and return the contents in the form of
a list of text lines. Lines that are comments, which are identified by a percent
(”%”) as the first non-space character, are added to the list as empty lines. This
is to make sure that the parser reports the correct line number of an syntax error
is encountered.

If the end of the file has been encountered, returns an empty string.

8.2 PlainReader::Init

SYNOPSIS

Init

DESCRIPTION

This proc does nothing, but is provided to make it comaptible with other read-
ers.

9 PrefixReader

The prefix reader is a comment reader that extracts doc-comments from pro-
gramming languages where comments are prefixed with a special character or
set of characters. In tcl this is the pound character (#), while in Lisp, it is
the semicolon character. In order to distinguish Coda-comments from other
comments, a Coda comment block must begin with a superstring of the initial
character. For tcl, like in this source file, Coda-comments starts with a double
pound.

And additional requirement also applies to comments read by this reader:
The prefix must be the first non-space character on the string. The PrefixReader
needs two parameters to read any source code that uses a prefix commenting
style, like tcl. The prefix itself, and the prefix that starts a coda-comment (so
non-coda comments can be discarded).

A block of coda comment is thus identified by the coda comment prefix, and
subsequent lines starting with the language comment prefix. In other words, a
coda comment ends by the first line that is not a comment.

AUTHOR

Agnar Renolen, July 2001.

24



9.1 PrefixReader::GetNextItem

SYNOPSIS

GetNextItem channelid

DESCRIPTION

Reads the next coda comment from the source file read in channelid. If a
coda comment block is read, the contents of the comment (stripped from the
comment prefixes) is returned. If no comment is found, and empty string is
returned, which indicates that the end of file has been reached.

9.2 PrefixReader::Init

SYNOPSIS

PrefixReader::Init codaPrefix commentPrefix

DESCRIPTION

Sets up the PrefixReader to recognize comments where the first comment line
is prefixed with the codaPrefix, and the subsequent lines are prefixed with the
commentPrefix. The codaPrefix is necessary in order to distinguish coda com-
ments from any other comments in the source code, and the first characters of
the codaPrefix must be equal to the commentPrefix.

If this proc is not called, the codaPrefix will be set to ## and the comment-
Prefix will be set to #.

10 wcoda

SYNOPSIS

wcoda::show

DESCRIPTION

Shows a window where the user can select a set of files which the tcldoc program
might read comments comments and generate html documentation files into a
taregt directory.

10.1 wcoda::AddFiles

SYNOPSIS

AddFiles

25



DESCRIPTION

Invoked when the user adds a file from the current directory to the list of selected
files.

10.2 wcoda::BuildStatusWindow

SYNOPSIS

BuildStatusWindow pathName ?parent?

DESCRIPTION

Builds a window into which progress standard output is directed during docifica-
tion. The window will have a close button with the path name pathName.close.

10.3 wcoda::BuildWindow

SYNOPSIS

BuildWindow pathName

DESRIPTION

Builds the main window used by wcoda.

10.4 wcoda::ChangeCurrentDir

SYNOPSIS

ChangeCurrentDir

DESCRIPTION

Invoked when the user presses the ”Change Dir...” button. Brings up the choose
directory button, and filles the current directory listbox with the files of the new
directory if one was chosen.

10.5 wcoda::ChangeDir

SYNOPSIS

ChangeDir yCoord

DESCRIPTION

Invoked when user double clicks an item in the current directory list box. The
yCoord parameter specifies the y-coordinate of the mouse click. If the click was
in a directory, changes to that directory, and calls wcoda::FillWorkingDir (see
Section ??) to fill the list box with files of the new dorectory.

26



10.6 wcoda::CheckDocability

SYNOPSIS

CheckDocability

DESCRIPTION

Checks whether there are files in the listbox containing files to docify, and
enables the ”Docify” button if it contains files.

10.7 wcoda::CloseStatusWindow

SYNOPSIS

CloseStatusWindow pathName

DESCRIPTION

Closes the status window, normally invokes when the user closes the close but-
ton.

10.8 wcoda::DeleteFiles

SYNOPSIS

DeleteFiles

DESCRIPTION

Invoked when the user wants to delete files from the list of selected files.

10.9 wcoda::Docify

SYNOPSIS

Docify

DESCRIPTION

Invoked when the user presses the ”Docify” button. Brings up the staus window
and redirects all output to this window.

10.10 wcoda::FillFormatCombo

SYNOPSIS

FillFormatCombo formatList

27



DESCRIPTION

Fills the combobox specifying output format with values from valueList.

10.11 wcoda::FillWorkingDir

SYNOPSIS

FillWorkingDir

DESCRIPTION

Fills the current directory listbox with all files in the current directory.

10.12 wcoda::PickTargetDir

SYNOPSIS

PickTargetDir

DESCRIPTION

Invoked when the user presses the ”browse...” button of the target directory
entry. Sets the target directory entry if a directory was chosen in the dialog
that appears.

28


